Nonparametric Estimation of Quadratic Regression Functionals

نویسندگان

  • Li-Shan Huang
  • Jianqing Fan
چکیده

Quadratic regression functionals are important for bandwidth selection of nonparametric regression techniques and for nonparametric goodness-of-t test. Based on local polynomial regression , we propose estimators for weighted integrals of squared derivatives of regression functions. The rates of convergence in mean square error are calculated under various degrees of smoothness and appropriate values of the smoothing parameter. Asymptotic distributions of the proposed quadratic estimators are considered with the Gaussian noise assumption. It is shown that when the estimators are pseudo-quadratic (linear components dominate quadratic components), asymptotic normality with the n ?1=2 rate can be achieved.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

THE COMPARISON OF TWO METHOD NONPARAMETRIC APPROACH ON SMALL AREA ESTIMATION (CASE: APPROACH WITH KERNEL METHODS AND LOCAL POLYNOMIAL REGRESSION)

Small Area estimation is a technique used to estimate parameters of subpopulations with small sample sizes.  Small area estimation is needed  in obtaining information on a small area, such as sub-district or village.  Generally, in some cases, small area estimation uses parametric modeling.  But in fact, a lot of models have no linear relationship between the small area average and the covariat...

متن کامل

Minimax Estimation of a Bounded Squared Mean

Consider a normal model with unknown mean bounded by a known constant. This paper deals with minimax estimation of the squared mean. We establish an expression for the asymptotic minimax risk. This result is applied in nonparametric estimation of quadratic functionals.

متن کامل

Estimating linear functionals of the error distribution in nonparametric regression

This paper addresses estimation of linear functionals of the error distribution in nonparametric regression models. It derives an i.i.d. representation for the empirical estimator based on residuals, using undersmoothed estimators for the regression curve. Asymptotic efficiency of the estimator is proved. Estimation of the error variance is discussed in detail. In this case, undersmoothing is n...

متن کامل

Thresholding for weighted χ

Given data from a spherical Gaussian distribution with unknown mean vector θ, estimates of quadratic functionals are constructed by thresholding. Mean squared error bounds are derived via a comparison with those already available for a suitable noncentral χ variate. By way of illustration, the resulting inequalities are used to yield an optimal rate adaptivity result for estimation of integrate...

متن کامل

Asymptotic theory for local time density estimation and nonparametric cointegrating regression

Asymptotic theory is developed for local time density estimation for a general class of functionals of integrated time series. The main result provides a convenient basis for developing a limit theory for nonparametric cointegrating regression and nonstationary autoregression. The treatment directly involves local time estimation and the density function of the processes under consideration, pr...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2007